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    Abstract— In this paper, we study a problem of estimating 

parameters of sinusoids from noisy data within Bayesian 

inferential framework. In this context, three different 

computational schemes such as, Bretthorst’s integral method 

(BRETTHORST), Gibbs sampling (GIBBS) and parallel 

tempering (PT) are studied and modifications of their 

algorithms were tested on data generated from synthetic 

signals. In addition, our emphasis is given to a comparison of 

their performances with respect to Cramér-Rao lower bound 

(CRLB). 
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I. INTRODUCTION 

    In many experiments, a discrete data set 
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denoted as an output of a superposition of m  sinusoids is 

sampled at discrete times 1{ }N
i it = : 
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i c j s j i
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d a t a t e tω ω
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Due to the applicability of the sinusoidal model, it has 
received a great interest in many fields of science [1]. 
Especially, the frequency parameter has been subject to 
extensive research since it enters the signal model in non-
linear fashion. The term ( )e t  represents a random process at 

time t , due to measurement error. Then Equation (1) can 
commonly be written in the matrix-vector form:  

 = +D Ga e ,                                         (2) 

where D  is ( 1)N ×  matrix of data points; e  is ( 1)N ×  

matrix of independent identically distributed Gaussian noise  

samples with variance 2σ ; G  is ( 2 )N m×  matrix whose 

each column is a basis function evaluated at each point of 
time series and  a  is  (2 1)m× matrix whose components are 

arranged in order of coefficients of cosine and sine terms. 

The vector { }
1

{ , , , }
j j

m

c s j
j

a a ω σ
=

=θ  consists of parameters 

of signals and noise. Then, the goal of data analysis is 
usually to infer it

 
from D .  

We consider here three Bayesian approaches [1, 2, 4, 5] 
based on different numerical procedures for estimating 
parameters of noisy sinusoids. Although different 
researchers suggested different Bayesian approaches [6, 7, 
9], there has been a little work about a comparison of their 
performances. Therefore, a series of simulation studies with 
variations in the signal to noise ratio (SNR) and the length 
of the data sampling ( N ) are set up and the performances of 
the methods are compared with the CRLB[1,11] which is 
defined to be a limit on the best possible performance 
achievable given a dataset.   

 
II. BAYESIAN DATA ANALYSIS 

To estimate the parameters of signals from D , the 
methods based on Bayesian inference provide a 
mathematical foundation for making inferences about them. 
Therefore, the basic relationship quantifying inferences is 
given by Bayes’ rule [3, 12, 13]: 

( ) ( | , )
( | , )

( )

p I p I
p I

p I
=

θ D θ
θ D

D
,                       (3) 

where I   represents the prior information; ( )p Iθ  is the 

prior PDF of the parameter vector θ  that encapsulates our 
state of knowledge of the parameters before the receipt of 

the measurements D ;  ( )| ,p ID θ  is termed the likelihood 

function when considered as a function of θ , but is known 
as the sampling distribution when considered as a function 

of D ; ( ),p Iθ D  is the  posterior PDF of θ , that 

corresponds to the update of ( )p Iθ  incorporating the 

knowledge gained about θ   after the receipt of the 

observations D  and ( )p ID  is termed as an  evidence 

which is a measure of the probability but, it is constant in   
parameter estimation. In that case, the posterior PDF of 
θ given in Eq. (3) becomes 

( ) ( ) ( ), | , .p I p I p I∝θ D θ D θ                    (4) 
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To proceed further in the specification of ( ),p Iθ D , we 

now need to assign a functional form for ( )p Iθ  

and ( | , )p ID θ . Because different methods use different 

prior PDFs, we postpone discussing their assignments to the 
next sections but, in the case of independent measurements 
the assignment of a functional form for ( | , )p ID θ becomes 

( ) ( )2 22 1
( | , ) 2 exp

2

N

p I πσ χ
−  

= − 
 

D θ θ

 

,      (5) 

where  

( ) ( ) ( ) 2

2

1

,N
i i

i

d t f t
χ

σ
=

 −
=   

 
∑

θ
θ .                 (6) 

After making assignments to the prior and posterior PDF, 
the problem turns out to search θ  in a parameter space ℑ : 

               ( ){ }ˆ arg max ,p I
∈ℑ

=
θ

θ θ D .                          (7) 

 
III.   BAYESIAN METHODS 

 
A. Bretthorst’s Integral Method   
 

Let us rewrite the joint posterior PDF of all parameters in 
Equation (4):  

( ) ( ) ( )2 2 2, , , , , , , , , , ,c s c s c sp I p I p Iσ σ σ∝ ×ω a a D D ω a a ω a a .    (8) 

By use of product rule, the joint prior PDF becomes  

( ) ( ) ( ) ( )2 2, , , ,c s c sp I p I p I p Iσ σ∝ω a a a a ω .       (9) 

Here ω  is drawn uniformly so that ( ) mp I π −∝ω . On the 

other hand, one can suppose that 

( ), constantc sp I ∝a a and 2( ) constantp Iσ ∝ . Thus Eq. 

(9) is reduced to 

2( , , , ) m
c sp Iσ π −∝ω a a .                        (10) 

By using Equations (5) and (10) and dropping constant 
terms the posterior PDF in Eq. (4) becomes 

( ) ( )21
, , exp , ,

2
c s c sp I χ ∝ − 

 
ω a a ω a a .             (11) 

In order to obtain the marginal PDF of ω , we need to take 
the integration of Eq. (11) with respect to the amplitudes. If 

2σ  is known, then the posterior PDF of ω  is given by 

 
2

2
( | , ) exp( )

2

m
p I

σ
∝

h
ω D ,                      (12) 

where 
1

( ), ( 1,..., 2 )
N

l i l i

i

h d H t l m
=

= =∑ is a projection of data 

onto new orthogonal model functions ( )lH t : 

( ) 1/2 2

1
( ) ( , )

m

j j jl ll
H t G tλ ϕ

−

=
= ∑ ω

 

.       (13) 

Here ljϕ  represents the j th component of the l th 

normalized eigenvector of the matrix T=Ω G G , with lλ  as 

the corresponding eigenvalue. If there is no prior 
information about the noise, by using Jeffreys’ prior [14] 

( )2 2p Iσ σ −=  and integrating the expression in Eq. (11) 

with respect to 2σ  we obtain   

( )
22

2
, 1 .

m N

m
p I

N

−

 
 ∝ −
 
 

h
ω D

D
                 (14) 

This is the form of the "Student’s t distribution" with 
( )N m− degree of freedom.  

The approach summarized above requires analytical or 
numerical approximation of integrals which is not given 
here but, we refer to Bretthorst’s work [6]. [Consequently, 
Bayesian parameter estimation problem turns into 
maximization of the posterior PDF given in Eqs (13) and 
(14). Unfortunately, conventional algorithms [15, 16] based 
on the gradient direction fail to converge. Even when they 
converge, there is no assurance that they have found a 
global, rather than a local maximum. This is because the log 
of the posterior PDF is so sharply peaked and highly 
nonlinear function of ω . To overcome this problem, 
Bretthorst used a pattern search algorithm described by 
Hook-Jevees [17] but, we found out that this approach does 
not converge unless the starting point is much closer to the 
optimum ω . Therefore, we combined it with a simulated 
annealing (SA) algorithm [18, 19] to obtain a global 
maximum of the posterior PDF of ω . For detail information, 
we refer to our papers and book’s chapter in [26, 27, 28, 32].  
 
B. Gibbs Sampling 

In order to avoid solving the difficult multivariate 
maximization problem  in Section III.A, an alternative way 
proposed by Dou and Hodgson [7] combines Gibbs 
sampling (GS) with Bayesian inference. We extend this 
derivation for multiple frequency signals and summarize it 
below, but refer to their papers [7, 8] for detail information.  

Assume that 2σ  is known and there is no any specific 

information about{ }, ,c sω a a . Then Equation (8) turns out to 

be the following form:  
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( ) ( )2 2, , , , , , , ,c s c sp I p Iσ σ∝ω a a D D ω a a ,         (15) 

because of ( ), , constantc sp I ∝ω a a . Suppose also that 

jca is the only unknown parameter among{ }, ,
jc s−

a a ω , 

where { }1 1 1
,..., , ,...,

j j j mc c c c ca a a a
− − +
=a . If the distribution of 

noise is known as a-priori, the conditional PDF of 
jca  is 

considered to be as a univariate normal distribution: 

( )2 2 1ˆ( , , , , ) , ( )
j j j j j

T
c c s c c cp a aσ σ

−

−∝ Νa a ω D X X ,     (16) 
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D X
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X X
⋮           (17) 

and { }(1) (1)

1

ˆ N

i i
d

=
=D whose components are defined by 

(1)

1

ˆ cos( ) sin( ),
l l

m

i i c l i lj s l i
l

d d a t a tω δ ω
=

= − +∑    (18)  

where  
1

0lj

l j

l j
δ

≠
= 

=
 helps to eliminate the contribution of 

the cosine term of the j th sinusoid.  However, in some 

cases where 2σ  is unknown the joint posterior PDF of 

{ }, ,c sω a a  and 2σ  can be implemented in the form: 

( ) ( ) ( )2 2 2, , , , , , , ,c s c sp I p I p Iσ σ σ∝ω a a D D ω a a  (19) 

We eliminate it by taking Jeffreys’ prior [13] and integrating 

the expression in Eq. (16) with respect to 2σ  and obtain   a 
univariate Student’s t distribution: 

( )2 1ˆ( , , , , ) , ( ) , 1
j j j c c cj j j

T
c c s c a a ap a a s Nσ

−

−∝Τ −a a ω D X X ,   (20) 

with  

(1) (1)1 ˆ ˆˆ ˆ( ) ( )
1c j c j cj j j

T
a c a c as a a

N
= − −

−
D X D X .      (21) 

In a similar way, the conditional PDF of 
jsa  is given in the 

form of Eqs (17) and (20) but,  ˆ
jsa  and 

s j
aX are obtained by 

replacing 
jsa  and sine terms in Eqs (17) and (21) with 

jca  

and cosine terms, respectively. In Eqs (17) and (21), (1)
D̂  

term is calculated by eliminating the contribution of the sine 
term of the j th sinusoid instead of cosine term in Eq. (18).  

To be able to use the theory of GS algorithm for ω , we 

need Taylor series expansion of ( )2χ ω  at ω̂ :   

( ) ( ) ( ) ( ) ( )
2 2

2 2
ˆ

1 1

1
ˆ ˆ ˆ| ...,

2

m m

i i j j
i ji j

χ
χ χ ω ω ω ω

ω ω
= =

∂
≈ + − − +

∂ ∂∑∑ ω

ω
ω ω

 (22)                  

where
[ ]

( )2

0,

ˆ arg min
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χ
∈

=
ω

ω ω . Then the conditional PDF of jω  

turns out to be in the form: 
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where 

1 1 1 1
ˆ ˆsin( ) sin( )

ˆ ˆsin( ) sin( )

j j

j

j j

c j s j

c N j N s N j N

a t t a t t

a t t a t t
ω

ω ω

ω ω
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=  
 − + 

X ⋮   .         (24) 

If 2σ  is unknown, Equation (23) becomes  

( )2 2 1ˆ( , , , , ) , ( ) , 1
j j j

T
j j c s jp s Nω ω ωω σ ω −

− ∝ Τ −ω a a D X X .  (25) 

with  

                         ( ) ( )2 1 ˆ ˆ
1j

T

s
Nω

= − −
−

D D D D ,                 (26) 

where the components of D̂ is defined by the use of  the 

current estimated values of parameters. In numerical 
calculations, a systematic form of GS algorithm proceeds in 
the following manner. With arbitrary starting values 

{ },0 ,0 0, ,c sa a ω  random drawings are chosen from the full 

conditional PDFs described above as follows:  

1 1 1

1 1 1

,1 ,1 ,1 ,0 ,0 ,0 0

,1 ,1 ,1 ,1 ,0 ,0 0

,1 ,1 ,1 1,1 1,1 1,0 ,0

~ ( { ,...., , ,...., }, , , )

~ ( ,{ ,...., , ,...., }, , )

~ ( , ,{ ,...., , ,...., }, )

j j j j m j

j j j j j m

j j

c c c c c c s

s s c s s s s

j j c s j j m

a p a a a a a

a p a a a a a

pω ω ω ω ω ω

− +

− +

− +

a ω D

a ω D

a a D

   (27)       

After the first iteration, we get{ },1 ,1 1, ,c sa a ω . Repeating this 

procedure K  times, we obtain{ }, ,, ,c K s K Ka a ω . In Bayesian 

context, for a large enough K  the joint PDF can be replaced 
by the conditional PDF so that ,jc Ka , ,js Ka  and ,j Kω  become 

random variables. Then we draw M random samples 

of{ }, 1

Ml
c K l=

a , { }, 1

Ml
s K l=

a and{ }
1

Ml
K l=

ω   from their marginal PDFs, 

respectively and using them, we obtain the estimates about 
the corresponding parameters. 
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C. Parallel Tempering 

The GIBBS (GS) overcomes some problems associated 
with BRETTHORST but, it faces with a problem of 
simulating frequencies from their conditional PDF in Eq. 
(23) and (25). Because their direct simulations are 
impossible, they are approximated by a Taylor expansion 
at ω̂ that can be difficult with a lower SNR to obtain. To 
overcome these problems and provide a flexibility of choice 
of priors, we implement PT method [9, 10] that is originated 
with Swendsen [20], extended by Geyer [21] and later 
developed and successfully used in a number of general 
optimization problems.  

Suppose that a suitable prior PDF for  ω  is given by 

( ) ( ) ( )
( )2

22

1 1 1
0

3 23 23( )ln( )

0 otherwise

j

j
j

j
j

exp
cp I c

c

ω

ωω

ω µ
ω π

ωπ σω πσω

  −  + + − ≤ ≤ +  = +  




(28)
 

where c  is the mean of the standard deviation of the noise 
vector and the logarithmic term ensures that the prior PDF is 
normalized. In a similar way, the prior PDF for the 
amplitude 

jca  can also be taken as  

( )
( )2

min max22
max min a

1 1

2( ) 22 2

0 otherwise

j c

j

j cjc

c a

c
c a

a
exp D a D

p a I D D

µ

σπσ

  −  + − ≤ ≤  = −  
 



 , (29)     

where max min

2ca

D D
µ

+
= , and max min

3sa

D D
σ

−
=

 
. A similar 

prior PDF is also assigned to 
jsa by replacing 

jca with
jsa in 

Eq. (29).  Putting Eqs (28) and (29)   into Eq. (5), we obtain 

the posterior PDF ( ), | ,p Iω a D , denoted here as a 

tempered PDF ( , | , , )Iπ βω a D : 

 

ln( ( | , , ))( , | , , ) ( , | ) p II p I eβπ β = D ω a
ω a D ω a         (30) 

 
 Now, the problem turns out finding the parameter values 
that maximize Eq. (30) using the PT algorithm. It consists of 
two main updating steps. The first one is the state update of 
each chain in which there exists nβ  multiple copies of 

Markov chain Monte Carlo (MCMC) simulations[20], 
which are run simultaneously in parallel each at  different 
values of tempering parameter β . The second one is the 

swapping update between two neighboring chains at each 

sn step.  

MCMC algorithm generates desired samples { },tX = ω a
 
by 

constructing a kind of random walk in a model parameter 
space. Briefly, we pick a proposed value for 1tX +  drawn 

from a proposal PDF ( )1t tq X X+ , which is considered to be 

a multivariate Normal distribution with a mean equaled to 
current sample tX  and a deviation Xσ  named as a step size 

which is taken to be a square root of the CRLB for estimated 

parameters [21].  Let a random number 1u  drawn from a 

uniform distribution (0,1)U  . Then 1tX +  is accepted as a new 

value for tX  satisfying   

    

              ( )1 1,t tu X Xα +≤ ,                              (31)  

with a probability: 
 

( ) 1
1

( , )
, min 1,

( , )
t

t t

t

p X I
X X

p X I
α +

+

  
=  

  

D

D
 .           (32) 

This process continues until a random number 2u  drawn 

from (0,1)U  satisfies 2 1/ su n≤ . Then, at time t  the 

simulation iβ  in the state ,t iX  and the simulation 1iβ +  in the 

state , 1t iX +  can be interchanged if a random number 3u  

drawn from (0,1)U  satisfies   

3 , , 1( , ), (1 1)t i t iu X X i nα β+≤ ≤ ≤ − ,            (33) 

where   

, 1 , 1
, , 1

, , 1 1

( | , , ) ( | , , )
( , ) min 1, .

( | , , ) ( | , , )
t i i t i i

t i t i
t i i t i i

X I X I
X X

X I X I

π β π β
α

π β π β
+ +

+
+ +

  
=  

  

D D

D D
.   (34) 

This is called a probability of the swap acceptance.  As 
expected, after an initial burn-in period this proposed 
method generates samples tX  with a PDF equal to the 

desired posterior PDF ( ),tp X ID . Finally, inferences about 

parameters are based on these samples drawn from the 
output corresponding to the lowest temperature chain 
( 1β = ). For detail information about the algorithm, we refer 

to our recent papers in [30, 31]. 
 

IV. COMPUTER SIMULATIONS 
 

To demonstrate the proposed approaches with examples 
which are used by previous researchers [6-9], we firstly 
have created 512N =  data samples according to a multiple 
harmonic frequency signal model:  

  cos(0.1 t 1) 2cos(0.15 2) 5cos(0.3 3)

2cos(0.31 4) 3cos( +5) 
i i i i

i i i

d t t

t t e

= + + + + +

+ + + +
     (35) 

Here i  runs in a symmetric time interval from T−  to 

T ( )2 1N T= + and ie ~ ( )0,1Ν . Then, we carried out the 

Bayesian analysis of the simulated data. 
 All three methods, introduced here were coded in 
Mathematica, which contains a large collection of built-in 
functions so that it provides much shorter computer codes 
than those written in C or FORTRAN. They were run on a 
workstation with four processors which of each has got Intel 
Core 2 Quad CPU. For each method, initial values for the 
parameters are required to start iteration so that we first 
identified the locations of the peaks of the Fourier power 
spectral density with the greatest magnitude as an initial 
estimate for angular frequencies and then we carried on 
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calculating the coefficients ca  and sa  as initial values for 

amplitudes, respectively. In the case where the deviation of 
noise is unknown, the output of the computer simulation is 
illustrated in Table 1. It can be seen that the estimated five 
frequencies and their corresponding amplitudes for the 
model signal are recovered very well and quoted as (value) 
± (standard deviation).  
   The usual way the result from a spectral analysis is 
displayed is in the form of a power spectral density (PSD) 
[3, 6]. In order to do it, we focus on its definition that shows 
how much power is contained in a unit frequency. 
According to Bretthorst [6] the Bayesian PSD is defined as 
the expected value of the power of the signals over the joint 
posterior PDF.

  
In Fourier transform spectroscopy this is 

typically taken as the squared magnitude of the Discrete 
Fourier Transform (DFT) of the data so that Bayesian and 
Fourier PSDs for the signal are shown in Figure 1. Fourier 
PSD in Figure 1 (b) indicates only four of five well 
separated frequencies but, Bayesian PSDs in Figure 1 (c), 
(d) and (e) show that all the five frequencies have been well 
separated while the height is indicative of the resolution. A 
comparison of them implies that frequencies obtained by 
using the proposed methods are separated very well 
although the separation of the sinusoids is less than the 
Rayleigh resolution [3, 6, 24]. These results demonstrate 
ability of resolving closely spaced frequencies using the 
methods based on Bayesian inference.   

Moreover, we initially assumed that the values of the 
random noise in data were drawn from the Gaussian 
distribution. Figure 2 shows the exact and estimated PDF of 
the random noise in data using each of the proposed 
methods. It is seen that the estimated (dotted) PDF is closer 
to the true (solid) PDF and the histogram of the errors, 
which is known as nonparametric estimator of the PDF of 
the noise is also much closer to the true PDF.  

When we look the Tables (1) and also PSDs in Figure (1), 
all three methods give similar results. Therefore, in order to 
evaluate their frequency estimation performances, computer 
simulations were performed and comparisons were also 
made with the CRLB for different data length and various 
SNR values. We first generated 64 data samples with 
different noise levels from a single real tone frequency 
signal model.  After 50 independent trials under the same 
SNR, the mean square errors (MSE) of the estimated 
frequency were obtained by each of methods so that their 
logarithmic values were plotted as a function of the SNR, 
which varies from 0 to 20 dB and shown in Figure 3(a). It 
can be seen that BRETTHORST, GIBBS and PT estimators 
have thresholds about 3 dB, 4 dB and 5 dB of the SNR, 
respectively and they follow nicely with the CRLB after 5 
dB. As expected, larger SNR gives smaller MSE. To see 
changes in performances we calculated an efficiency 
parameter η [34], defined as ( )CRLB / MSE 100η = × , that 

indicates closeness to the CRLB. Table 2 contains the MSEs 
and the efficiency parameter values η  for the frequency 

estimation obtained at SNR 20dB= and 64N = . It is seen 

that BRETTHORST’s efficiency value is much closer to the 
CRLB than that of the others so that BRETTHORST is 
better estimator at SNR 20dB=  than the others.  

The above argument treats with only the case in which a 
data set of 64N =  is used for estimation. Therefore, one 

may ask how to estimation accuracy varies with N .  To 
answer it, we secondly generate data sets with different 
lengths from a single real tone frequency signal model.  
After independent 20 trials underSNR 10dB= , the MSEs of 
the estimated frequency were obtained by each of methods 
so that their logarithmic values were plotted as a function of 
N , that vary between 64 and 676 and shown in Figure 3(b).  
From these results, larger  N  makes higher accuracy but, 
requires larger consumption of CPU time. It is also expected 

that lower SNR and less value for N deteriorate their 
performances. Table 2 also contains the MSEs and 
efficiency values η for the frequency estimation obtained in 

the case of 676N = . According to the CRLB all three 
methods have almost same performance under different data 
lengths. As a result, the performances of the proposed 
methods are close to optimal with a minimum variance, 
which is close to the predictions made by the CRLB.  

 
CONCLUSIONS 

 
In this paper, we have partly improved three Bayesian 

approaches using different numerical procedures for 
estimating parameters of multiple sinusoids embedded in 
Gaussian noise. Overall results show that Bayesian approach 
can not only give us the best estimates for the parameters 
but, also tell us uncertainties associated with their estimated 
values. Although they are more computationally intensive 
than the usual power spectrum methods, they are the best 
suited to those datasets where the values are noisy and 
aliasing that causes difficulties in the interpretation of the 
power spectrum. Moreover, the performances of the 
proposed algorithms for single frequency estimation are 
demonstrated via computer simulations at different data 
lengths and signal to noise ratios. 
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Figure 1 Spectral analysis of multiple frequencies signal 

model: (a) Observed data (b) Fourier power spectral density 

(c)   Bretthorsts’ integral method   (d) Gibbs sampling (e) 

Parallel Tempering. 

Table 3. Performance comparison of Bayesian methods for 

single frequency estimation 

PARAM
ETERS 

TRUE 
VALUES 

BRETTHO
RSTS 

GIBBS 
 

PT 

1
ω  0.1000 0.1001  

± 0.0005 
0.0989  
± 0.0004 

0.1005 
±0.0004 

2
ω

 
0.1500 0.1502  

± 0.0003 
0.1499  
± 0.0002 

0.1502 
±0.0002 

3
ω

 
0.3000 0.2997 

± 0.0002 
0.3001  
± 0.0001 

0.2998 
±0.0001 

4
ω

 
0.3100 0.3097  

± 0.0004 
0.3102  
± 0.0002 

0.3094 
±0.0003 

5
ω

 
1.000 0.9999 

 ± 0.0002 
1.0000 
 ± 0.0001 

1.0001 
±0.0001 

1
B

 
0.5403 0.5669 

± 0.0645 
0.5740 
 ± 0.0657 

0.5645 
±0.0573 

2
B

 
-0.8414 -0.8922  

± 0.0646 
-0.7589 
 ± 0.0662 

-0.7664 
±0.0586 

3
B

 
-0.8322 -0.8873 

± 0.0662 
-0.8922 
 ± 0.0654 

-0.7985 
±0.0604 

4
B

 
-1.8185 -1.8215  

± 0.0661 
-1.8140 
 ± 0.0662 

- 1.8304 
±0.066 

5
B  -4.9499 -4.7931  

± 0.0649 
-5.0060 
 ± 0.0658 

-4.9055 
±0.0934 

6
B  -0.7056 -0.7841 

± 0.0655 
-0.7615 
 ± 0.0655 

-0.7161 
±0.0915 

7
B

 
-1.3072 -1.3671  

± 0.0653 
-1.1790 
 ± 0.0651 

-1.3965 
±0.1178 

8
B

 
1.5136 1.4932 

±0.0628 
1.4840 
 ± 0.0656 

1.4921 
±0.0681 

9
B

 
0.8500 0.8879  

± 0.0667 
0.9373 
 ± 0.0655 

0.8414 
±0.0651 

10
B

 
2.8767 2.9218  

 ± 0.0649 
2.9260 
 ± 0.0657 

2.8529 
±0.0612 

(b) 

(a) 

(c) 

(d) 

(e) 
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  Figure 2. Comparison of exact and estimate PDFs 

of the    noise in data 
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Figure 4. (a) Mean squared frequency errors for 

0.3ω =  versus SNR at 64N = . (b) Mean squared 

frequency errors for 0.3ω = versus N at SNR 10dB= .  
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Table2. The best estimates of parameters for a multiple 
frequency sinusoidal signal model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          SNR 20dB=       672N =  

 

Methods 

 

    MSE(dB) 

 

Efficieny 

 

MSE(dB) 

 

Efficiency 

GIBBS -72.0742 110 -81.371 122 
BRETTHORST -74.7158 106 -83.007 120 

P T -68.266 116 -85.010 117 

CRLB -79.3572 100 -99.357 100 

(b)

(a) 
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